A hybrid approach for personalized news recommendation with ordered clustering algorithm, rich user and news metadata
One of the most commonly used of online services is news reading. A key challenge is selecting news articles from millions of sources considering user behavior and actual nature of news articles to recommend accurately. A personalized news recommendation system provides a news set that is extracted...
Saved in:
主要作者: | Darvishy, Asghar |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2019
|
主题: | |
在线阅读: | http://psasir.upm.edu.my/id/eprint/90771/1/FSKTM%202019%2060%20IR.pdf http://psasir.upm.edu.my/id/eprint/90771/ |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
HYPNER a framework for hybrid personalized news recommender systems
由: Darvishy, Asghar, et al.
出版: (2014) -
A customized non-exclusive clustering algorithm for news recommendation systems
由: Ibrahim, Hamidah, et al.
出版: (2019) -
HYPNER: a hybrid approach for personalised news recommendation
由: Darvishy, Asghar, et al.
出版: (2020) -
Analysis of Chinese patents associated with incremental clustering algorithms: A review / Archana Chaudhari
由: Chaudhari, Archana, et al.
出版: (2022) -
Fusing fine-grained information of sequential news for personalized news recommendation
由: Zhang, Jin Cheng, et al.
出版: (2023)