Fusing fine-grained information of sequential news for personalized news recommendation
In this paper, we propose a novel method that fuses Fine-grained Information of Sequential News for personalized news recommendation (FISN). FISN comprises three primary modules: news encoder, clicked news optimizer and user encoder. The news encoder uses fine-grained information to learn accurate n...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | Conference or Workshop Item |
出版事項: |
2023
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/108154/ http://dx.doi.org/10.1007/978-3-031-39821-6_9 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|