Skip to content
VuFind
  • Your Account
  • Log Out
  • Login
  • Theme
    • Bootstrap
    • MALrep
  • Language
    • English
    • 日本語
    • 中文(简体)
    • 中文(繁體)
    • اللغة العربية
Advanced
  • Hybrid artificial neural netwo...
  • Holdings
  • Cite this
  • Text this
  • Email this
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Save to List
Cover Image

Hybrid artificial neural network-naive bayes classifier for solving imbalanced dataset problems

Saved in:
Bibliographic Details
Main Author: Adam, Asrul
Format: Thesis
Published: 2012
Subjects:
Unspecified
Online Access:http://eprints.utm.my/id/eprint/32157/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:68089?site_name=Restricted Repository
Tags: Add Tag
No Tags, Be the first to tag this record!
  • Holdings
  • Description
  • Comments
  • Similar Items
  • Staff View

Internet

http://eprints.utm.my/id/eprint/32157/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:68089?site_name=Restricted Repository

Similar Items

  • Development of a hybrid artificial neural network - naive bayes classifier for binary classification problem of imbalanced datasets
    by: Adam, Asrul, et al.
    Published: (2011)
  • Artificial neural network — Naïve bayes fusion for solving classification problem of imbalanced dataset
    by: Adam, A., et al.
    Published: (2011)
  • Development of a hybrid artificial neural network - ive bayes classifier for biry classification problem of imbalanced datasets
    by: Adam, Asrul, et al.
    Published: (2011)
  • A probabilistic classifier for imbalanced dataset problems
    by: Lai, Yee Yang
    Published: (2012)
  • Classification of imbalanced datasets using naive bayes
    by: Mohd. Sobran, Nur Maisarah
    Published: (2011)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs
Loading...