Automated dataset generation for training peer-to-peer machine learning classifiers
Peer-to-peer (P2P) classifications based on flow statistics have been proven accurate in detecting P2P traffic. A machine learning classification is affected by the quality and recency of the training dataset used. Hence, to classify P2P traffic on-line requires the removal of these limitations. In...
Saved in:
Main Authors: | Zarei, Roozbeh, Monemi, Alireza, Marsono, Muhammad Nadzir |
---|---|
格式: | Article |
出版: |
Springer Science and Business Media, LLC
2015
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/57928/ http://dx.doi.org/10.1007/s10922-013-9279-z |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Practical training dataset generation and retraining mechanism for on-line peer-to-peer traffic classification
由: Zarei, Roozbeh
出版: (2012) -
Retraining mechanism for on-line peer-to-peer traffic classification
由: Zarei, R., et al.
出版: (2013) -
Impact of packet inter-arrival time features for online peer-to-peer (P2P) classification
由: Abdalla, Bushra Mohammed Ali, et al.
出版: (2018) -
Machine learning-blockchain based autonomic peer-to-peer energy trading system
由: Merrad, Yacine, et al.
出版: (2022) -
Parameterizable decision tree classifier on NETFPGA
由: Monemi, A., et al.
出版: (2013)