A genetic based wrapper feature selection approach using nearest neighbour distance matrix
Feature selection for data mining optimization receives quite a high demand especially on high-dimensional feature vectors of a data. Feature selection is a method used to select the best feature (or combination of features) for the data in order to achieve similar or better classification rate.Cur...
محفوظ في:
المؤلفون الرئيسيون: | Sainin, Mohd Shamrie, Alfred, Rayner |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2011
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://repo.uum.edu.my/12231/1/05976534.pdf http://repo.uum.edu.my/12231/ http://dx.doi.org/10.1109/DMO.2011.5976534 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Nearest neighbour distance matrix classification
بواسطة: Sainin, Mohd Shamrie, وآخرون
منشور في: (2010) -
Feature selection for Malaysian medicinal plant
leaf shape identification and classification
بواسطة: Sainin, Mohd Shamrie, وآخرون
منشور في: (2014) -
k-nearest neighbour using ensemble clustering based on feature selection approach to learning relational data
بواسطة: Alfred, Rayner, وآخرون
منشور في: (2016) -
Ensemble meta classifier with sampling and feature selection for data with multiclass imbalance problem
بواسطة: Mohd Shamrie Sainin, وآخرون
منشور في: (2021) -
ENBFS+kNN: Hybrid ensemble classifier using entropy-based naïve Bayes with feature selection and k-nearest neighbor
بواسطة: Sainin, Mohd Shamrie, وآخرون
منشور في: (2016)