Deviation detection in text using conceptual graph interchange format and error tolerance dissimilarity function

The rapid increase in the amount of textual data has brought forward a growing research interest towards mining text to detect deviations. Specialized methods for specific domains have emerged to satisfy various needs in discovering rare patterns in text. This paper focuses on a graph-based approach...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kamaruddin, Siti Sakira, Hamdan, Abdul Razak, Abu Bakar, Azuraliza, Mat Nor, Fauzias
格式: Article
語言:English
出版: IOS Press 2012
主題:
在線閱讀:http://repo.uum.edu.my/15356/1/ida%252F2012%252F16-3%252FIDA00535.pdf
http://repo.uum.edu.my/15356/
http://dx.doi.org/10.3233/IDA-2012-0535
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The rapid increase in the amount of textual data has brought forward a growing research interest towards mining text to detect deviations. Specialized methods for specific domains have emerged to satisfy various needs in discovering rare patterns in text. This paper focuses on a graph-based approach for text representation and presents a novel error tolerance dissimilarity algorithm for deviation detection. We resolve two non-trivial problems, i.e. semantic representation of text and the complexity of graph matching. We employ conceptual graphs interchange format (CGIF) – a knowledge representation formalism to capture the structure and semantics of sentences. We propose a novel error tolerance dissimilarity algorithm to detect deviations in the CGIFs. We evaluate our method in the context of analyzing real world financial statements for identifying deviating performance indicators. We show that our method performs better when compared with two related text based graph similarity measuring methods. Our proposed method has managed to identify deviating sentences and it strongly correlates with expert judgments. Furthermore, it offers error tolerance matching of CGIFs and retains a linear complexity with the increasing number of CGIFs.