Complexity Approximation of Classification Task for Large Dataset Ensemble Artificial Neural Networks
. In this paper, operational and complexity analysis model for ensemble Artificial Neural Networks (ANN) multiple classifiers are investigated. The main idea behind this, is lie on large dataset classification complexity and burden are to be moderated by using partitioning for parallel tasks and com...
保存先:
主要な著者: | Mohamad, Prof. Madya Ts. Dr. Mumtazimah, Abd Hamid, Nazirah |
---|---|
フォーマット: | Book Section |
言語: | English |
出版事項: |
Springer- Verlag
2015
|
主題: | |
オンライン・アクセス: | http://eprints.unisza.edu.my/3139/1/FH05-FIK-15-03849.pdf http://eprints.unisza.edu.my/3139/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Complexity approximation of classification task for large dataset ensemble artificial neural networks
著者:: Mumtazimah, Mohamad, 等
出版事項: (2019) -
The Reconstructed Heterogeneity to Enhance Ensemble Neural Network for Large Data
著者:: Mohamad, Prof. Madya Ts. Dr. Mumtazimah, 等
出版事項: (2016) -
The Reconstructed Heterogeneity to Enhance Ensemble Neural Network for Large Data
著者:: Mohamad, Prof. Madya Ts. Dr. Mumtazimah, 等
出版事項: (2016) -
Comparison of diverse ensemble neural network for large data classification
著者:: Mumtazimah, Mohamad, 等
出版事項: (2015) -
An Analysis of Large Data Classification using Ensemble
Neural Network
著者:: Mumtazimah, Mohamad, 等
出版事項: (2017)