Rough set approach for categorical data clustering
A few techniques of rough categorical data clustering exist to group objects having similar characteristics. However, the performance of the techniques is an issue due to low accuracy, high computational complexity and clusters purity. This work proposes a new technique called Maximum Dependen...
محفوظ في:
المؤلف الرئيسي: | Herawan, Tutut |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2010
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/3609/1/24p%20TUTUT%20HERAWAN.pdf http://eprints.uthm.edu.my/3609/2/TUTUT%20HERAWAN%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/3609/3/TUTUT%20HERAWAN%20WATERMARK.pdf http://eprints.uthm.edu.my/3609/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Flu diagnosis system using jaccard index and rough set approaches
بواسطة: Efend, Riswan, وآخرون
منشور في: (2018) -
Text Categorization Using Naive Bayes Algorithm
بواسطة: Wan Hazimah, Wan Ismail
منشور في: (2005) -
Feature selection for traditional Malay musical instrument sound classification using rough set
بواسطة: Senan, Norhalina
منشور في: (2013) -
Data mining in network traffic using fuzzy clustering
بواسطة: Mohamad, Shamsul
منشور في: (2003) -
A relative tolerance relation of rough set with reduct and core approach, and application to incomplete information systems
بواسطة: Saedudin, Rd. Rohmat
منشور في: (2020)