Rough set approach for categorical data clustering
A few techniques of rough categorical data clustering exist to group objects having similar characteristics. However, the performance of the techniques is an issue due to low accuracy, high computational complexity and clusters purity. This work proposes a new technique called Maximum Dependen...
保存先:
第一著者: | Herawan, Tutut |
---|---|
フォーマット: | 学位論文 |
言語: | English English English |
出版事項: |
2010
|
主題: | |
オンライン・アクセス: | http://eprints.uthm.edu.my/3609/1/24p%20TUTUT%20HERAWAN.pdf http://eprints.uthm.edu.my/3609/2/TUTUT%20HERAWAN%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/3609/3/TUTUT%20HERAWAN%20WATERMARK.pdf http://eprints.uthm.edu.my/3609/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Flu diagnosis system using jaccard index and rough set approaches
著者:: Efend, Riswan, 等
出版事項: (2018) -
Text Categorization Using Naive Bayes Algorithm
著者:: Wan Hazimah, Wan Ismail
出版事項: (2005) -
Feature selection for traditional Malay musical instrument sound classification using rough set
著者:: Senan, Norhalina
出版事項: (2013) -
Data mining in network traffic using fuzzy clustering
著者:: Mohamad, Shamsul
出版事項: (2003) -
A relative tolerance relation of rough set with reduct and core approach, and application to incomplete information systems
著者:: Saedudin, Rd. Rohmat
出版事項: (2020)