Fuzzy c-means sub-clustering with re-sampling in network intrusion detection
Both supervised and unsupervised learning are popularly used to address the classification problem in anomaly intrusion detection. The classical and challenging task in intrusion detection is how to identify and classify new attacks or variants of normal traffic. Though the classification rate is no...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | Book Section |
出版事項: |
IEEE
2009
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/14624/ http://dx.doi.org/10.1109/IAS.2009.333 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|