An interaction based collaborative filtering approach for personal learning environment

In this modern era of technology and information, e-learning has become an integral part of learning using these modern technologies. There are different variations or classification of e-learning but the most notable is Personal Learning Environment (PLE). Since, in a PLE system, the contents are p...

詳細記述

保存先:
書誌詳細
第一著者: Ali, Syed Mubarak
フォーマット: 学位論文
出版事項: 2014
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/48343/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
id my.utm.48343
record_format eprints
spelling my.utm.483432017-08-13T01:53:46Z http://eprints.utm.my/id/eprint/48343/ An interaction based collaborative filtering approach for personal learning environment Ali, Syed Mubarak LB Theory and practice of education In this modern era of technology and information, e-learning has become an integral part of learning using these modern technologies. There are different variations or classification of e-learning but the most notable is Personal Learning Environment (PLE). Since, in a PLE system, the contents are presented to the user in a personalized manner, the problem arises regarding personalization. These days, lot information is available over internet but not every information is relevant to every user. So, in order to filter the information, different types of recommender techniques evolves. The most popular among these techniques is collaborative filtering. As the technology advances, so does the problem, similarly the recommendation techniques suffer with a very popular problem called cold-start problem. In this problem, when a new user enters in the system, due to the lack of information about the new user, the system fails to recommend contents accurately. Previously, collaborative filtering uses different approaches for recommendation like preferences profile, user ratings and tagging recommendations. In this research work a new approach is proposed to improve the recommendation accuracy for new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for this user both implicitly and explicitly thus solving new-user cold-start problem. Result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1- measure 2014 Thesis NonPeerReviewed Ali, Syed Mubarak (2014) An interaction based collaborative filtering approach for personal learning environment. Masters thesis, Universiti Teknologi Malaysia, Advanced Informatics School.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic LB Theory and practice of education
spellingShingle LB Theory and practice of education
Ali, Syed Mubarak
An interaction based collaborative filtering approach for personal learning environment
description In this modern era of technology and information, e-learning has become an integral part of learning using these modern technologies. There are different variations or classification of e-learning but the most notable is Personal Learning Environment (PLE). Since, in a PLE system, the contents are presented to the user in a personalized manner, the problem arises regarding personalization. These days, lot information is available over internet but not every information is relevant to every user. So, in order to filter the information, different types of recommender techniques evolves. The most popular among these techniques is collaborative filtering. As the technology advances, so does the problem, similarly the recommendation techniques suffer with a very popular problem called cold-start problem. In this problem, when a new user enters in the system, due to the lack of information about the new user, the system fails to recommend contents accurately. Previously, collaborative filtering uses different approaches for recommendation like preferences profile, user ratings and tagging recommendations. In this research work a new approach is proposed to improve the recommendation accuracy for new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for this user both implicitly and explicitly thus solving new-user cold-start problem. Result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1- measure
format Thesis
author Ali, Syed Mubarak
author_facet Ali, Syed Mubarak
author_sort Ali, Syed Mubarak
title An interaction based collaborative filtering approach for personal learning environment
title_short An interaction based collaborative filtering approach for personal learning environment
title_full An interaction based collaborative filtering approach for personal learning environment
title_fullStr An interaction based collaborative filtering approach for personal learning environment
title_full_unstemmed An interaction based collaborative filtering approach for personal learning environment
title_sort interaction based collaborative filtering approach for personal learning environment
publishDate 2014
url http://eprints.utm.my/id/eprint/48343/
_version_ 1643652532327677952
score 13.252575