Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries

A series of Fe3O4/CNT nanocomposites are effectively synthesized by an in situ chemical co-precipitation technique. The structure, morphology and chemical composition of synthesized nanocomposites are analyzed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Abbas, Syed Mustansar, Ali, Saqib, Niaz, Niaz Ahmad, Ali, Nisar, Ahmed, Rashid, Ahmad, Nisar
التنسيق: مقال
منشور في: Elsevier 2014
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/62726/
http://dx.doi.org/10.1016/j.jallcom.2014.05.103
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:A series of Fe3O4/CNT nanocomposites are effectively synthesized by an in situ chemical co-precipitation technique. The structure, morphology and chemical composition of synthesized nanocomposites are analyzed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy, transmission electron microscopy and fourier-transform infrared spectroscopy. The electrochemical performance of synthesized nanocomposites is tested by cyclic voltammetry (CV), charge/discharge studies and electrochemical impedance spectroscopy (EIS). The carbon nanotubes are nicely dispersed in the Fe3O4 nanoparticles for all the nanocomposites. Due to the synergistic effect arising from Fe3O4 nanoparticles and carbon nanotubes, the electrochemical properties of pure Fe3O4 material is considerably enhanced. A discharge capacity of 1093 mA h g (1) is demonstrated by Fe3O4-7% CNT nanocomposite at a current density of 100 mA g (1) with a high columbic efficiency of 98.4%. Moreover, this nanocomposite shows a stable cycling and rate performance at higher current densities. Hence, based on the above studies, such Fe3O4/CNT nanocomposite could be a possible contributor for lithium ion batteries.