Enhanced single exponential smoothing technique for extreme data
Flood is an extreme event that causes damage to properties and loss of human life. Extreme event time series is usually nonlinear pattern. This produces high fluctuations in signal and large uncertainty in forecast quality. Single Exponential Smoothing Technique (SEST) is used for time series foreca...
保存先:
第一著者: | Noor Shahifah, Muhamad |
---|---|
フォーマット: | 学位論文 |
言語: | English English |
出版事項: |
2015
|
主題: | |
オンライン・アクセス: | http://etd.uum.edu.my/5766/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Principal component and multiple correspondence analysis for handling mixed variables in the smoothed location model
著者:: Ngu, Penny Ai Huong
出版事項: (2016) -
Robust multivariate exponential weighted moving average (MEWMA) control charts using distance-wise robust estimators
著者:: Faridzah, Jamaluddin
出版事項: (2020) -
Unemployment in ASEAN countries: panel data analysis
著者:: Muhamad Mustaqim Azmi, Hamdan Kumaran
出版事項: (2021) -
Analysis of Bankruptcy using Data Mining Approach
著者:: Ong, Ai Ping
出版事項: (2009) -
MST 567 - CATEGORICAL DATA ANALYSIS NOVEMBER 2009
著者:: PPSM, Pusat Pengajian Sains Matematik
出版事項: (2009)