Combining sampling and ensemble classifier for multiclass imbalance data learning
The aim of this paper is to investigate the effects of combining various sampling and ensemble classifiers on the prediction performance in addressing the multiclass imbalance data learning. This research uses data obtained from the Malaysian medicinal leaf images shape data and three other large be...
保存先:
主要な著者: | Sainin, Mohd Shamrie, Alfred, Rayner, Adnan, Fairuz, Ahmad, Faudziah |
---|---|
フォーマット: | Book Section |
出版事項: |
Springer
2018
|
主題: | |
オンライン・アクセス: | http://repo.uum.edu.my/25566/ http://doi.org/10.1007/978-981-10-8276-4_25 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Ensemble Meta Classifier with Sampling and Feature Selection for Data with Multiclass Imbalance Problem
著者:: Sainin, Mohd Shamrie, 等
出版事項: (2021) -
Ensemble meta classifier with sampling and feature selection for data with multiclass imbalance problem
著者:: Mohd Shamrie Sainin, 等
出版事項: (2021) -
Ensemble meta classifier with sampling and feature selection for data with multiclass imbalance problem
著者:: Mohd Shamrie Sainin, 等
出版事項: (2021) -
Ensemble classifier and resampling for imbalanced multiclass learning
著者:: Sainin, Mohd Shamrie, 等
出版事項: (2015) -
A direct ensemble classifier for imbalanced multiclass learning
著者:: Sainin, Mohd Shamrie, 等
出版事項: (2012)