Improved cluster partition in principal component analysis guided clustering
Principal component analysis (PCA) guided clustering approach is widely used in high dimensional data to improve the efficiency of K- means cluster solutions. Typically, Pearson correlation is used in PCA to provide an eigen-analysis to obtain the associated components that account for most of the v...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
2013
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/40261/ http://dx.doi.org/10.5120/13156-0839 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|