Improved cluster partition in principal component analysis guided clustering
Principal component analysis (PCA) guided clustering approach is widely used in high dimensional data to improve the efficiency of K- means cluster solutions. Typically, Pearson correlation is used in PCA to provide an eigen-analysis to obtain the associated components that account for most of the v...
保存先:
主要な著者: | Shaharudin, S. M., Ahmad, Norhaiza, Yusof, Fadhilah |
---|---|
フォーマット: | 論文 |
出版事項: |
2013
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/40261/ http://dx.doi.org/10.5120/13156-0839 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Improved clustering using robust and classical principal component
著者:: Hassn, Ahmed Kadom
出版事項: (2017) -
An efficient method to improve the clustering performance using hybrid robust principal component analysis-spectral biclustering in rainfall patterns identification
著者:: Shazlyn Milleana Shaharudin
出版事項: (2019) -
An efficient method to improve the clustering performance using hybrid robust principal component analysis-spectral biclustering in rainfall patterns identification
著者:: Shaharudin, S. M., 等
出版事項: (2019) -
Choice of percentage of cumulative in principal component analysis to define region
著者:: Shaharudin, Shazlyn Milleana
出版事項: (2011) -
Improved k-means clustering using principal component analysis and imputation methods for breast cancer dataset
著者:: Armina, Roslan
出版事項: (2018)