Improved cluster partition in principal component analysis guided clustering
Principal component analysis (PCA) guided clustering approach is widely used in high dimensional data to improve the efficiency of K- means cluster solutions. Typically, Pearson correlation is used in PCA to provide an eigen-analysis to obtain the associated components that account for most of the v...
محفوظ في:
المؤلفون الرئيسيون: | Shaharudin, S. M., Ahmad, Norhaiza, Yusof, Fadhilah |
---|---|
التنسيق: | مقال |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/40261/ http://dx.doi.org/10.5120/13156-0839 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Improved clustering using robust and classical principal component
بواسطة: Hassn, Ahmed Kadom
منشور في: (2017) -
An efficient method to improve the clustering performance using hybrid robust principal component analysis-spectral biclustering in rainfall patterns identification
بواسطة: Shazlyn Milleana Shaharudin
منشور في: (2019) -
An efficient method to improve the clustering performance using hybrid robust principal component analysis-spectral biclustering in rainfall patterns identification
بواسطة: Shaharudin, S. M., وآخرون
منشور في: (2019) -
Choice of percentage of cumulative in principal component analysis to define region
بواسطة: Shaharudin, Shazlyn Milleana
منشور في: (2011) -
Improved k-means clustering using principal component analysis and imputation methods for breast cancer dataset
بواسطة: Armina, Roslan
منشور في: (2018)