Metamorphic malware detection based on support vector machine classification of malware sub-signatures
Achieving accurate and efficient metamorphic malware detection remains a challenge. Metamorphic malware is able to mutate and alter its code structure in each infection that can circumvent signature matching detection. However, some vital functionalities and code segments remain unchanged between mu...
保存先:
主要な著者: | Khammas, Ban Mohammed, Monemi, Alireza, Ismail, Ismahani, Mohd. Nor, Sulaiman, Marsono, Muhammad Nadzir |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Universitas Ahmad Dahlan
2016
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/71495/1/IsmahaniIsmail2016_Metamorphicmalwaredetectionbasedon.pdf http://eprints.utm.my/id/eprint/71495/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994645699&doi=10.12928%2ftelkomnika.v14.i3.3850&partnerID=40&md5=9bddd91d72dd3d7765283346cee06803 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Feature selection and machine learning classification for malware detection
著者:: Khammas, Ban Mohammed, 等
出版事項: (2015) -
Incorporating known malware signatures to classify new malware variants in network traffic
著者:: Ismail, Ismahani, 等
出版事項: (2015) -
Stateless malware packet detection by incorporating Naive Bayes with known malware signatures
著者:: Ismail, Ismahani, 等
出版事項: (2014) -
Metamorphic malware detection using machine learning
著者:: Ahmed Ali, Mohammed Hasan Ali
出版事項: (2020) -
Camouflage in Malware : from encryption to metamorphism
著者:: Rad, Babak Bashari, 等
出版事項: (2012)